
Page1 

Algorithms in the Real World 
Generator & parity check matrices 

Error Correcting Codes II 

– Cyclic Codes 

– Reed-Solomon Codes 



Page2 

Reed-Solomon: Outline 

A (n, k, n-k+1) Reed Solomon Code: 

Consider the polynomial 

p(x) = ak-1 xk-1 + L + a1 x + a0 

Message:  (ak-1, …, a1, a0)  

Codeword: (p(1), p(2), …, p(n)) 

To keep the p(i) fixed size, we use ai 2 GF(pr) 

To make the p(i) distinct,  n < pr 

 

Any subset of size k of (p(1), p(2), …, p(n)) is enough 
to reconstruct p(x). 



Page3 

Reed Solomon: Outline 

A (n, k, 2s +1) Reed Solomon Code: 

k 2s 

Can detect 2s errors 

Can correct s errors 

Generally can correct a erasures and b errors if  
a + 2b · 2s 

n 



Page4 

Reed Solomon: Outline 

Correcting s errors: 

1. Find k + s symbols that agree on a polynomial p(x). 
These must exist since originally k + 2s symbols 
agreed and only s are in error 

2. There are no k + s symbols that agree on the 
wrong polynomial p’(x) 

- Any subset of k symbols will define p’(x) 

- Since at most s out of the k+s symbols are in 
error, p’(x) = p(x) 

 

 

 

 



Page5 

Reed Solomon: Outline 

Systematic version of Reed-Solomon  

p(x) = ak-1 xk-1 + L + a1 x + a0 

Message:  (ak-1, …, a1, a0)  

Codeword: (ak-1, …, a1, a0, p(1), p(2), …, p(2s)) 

This has the advantage that if we know there are no 
errors, it is trivial to decode. 

Later we will see that version of RS used in practice 
uses something slightly different than p(1), p(2), … 

This will allow us to use the “Parity Check” ideas 
from linear codes (i.e  HcT = 0?) to quickly test for 
errors. 

 



Page6 

RS in the Real World 

(204,188,17)256  : ITU J.83(A)2 

(128,122,7)256 : ITU J.83(B) 
(255,223,33)256 : Common in Practice 

– Note that they are all byte based  
(i.e. symbols are from GF(28)). 

Performance on 600MHz Pentium (approx.): 
– (255,251) = 45Mbps 
– (255,223) =  4Mbps 

Dozens of companies sell hardware cores that 
operate 10x faster (or more) 
–  (204,188) = 320Mbps (Altera decoder) 

 
 



Page7 

Applications or Reed-Solomon Codes 

• Storage: CDs, DVDs, “hard drives”, 

• Wireless: Cell phones, wireless links 

• Sateline and Space: TV, Mars rover, … 

• Digital Television: DVD, MPEG2 layover 

• High Speed Modems: ADSL, DSL, .. 

 

Good at handling burst errors. 

Other codes are better for random errors. 

– e.g. Gallager codes, Turbo codes 

 



Page8 

RS and “burst” errors 

They can both correct 1 error, but not 2 random errors. 
– The Hamming code does this with fewer check bits 

However, RS can fix 8 contiguous bit errors in one byte 
– Much better than lower bound for 8 arbitrary errors 

bitscheck  88)7log(8
81

1log 































 n

nn
L

code bits check bits 

RS (255, 253, 3)256 2040 16 

Hamming (211-1, 211-11-1, 3)2 2047 11 

Let’s compare to Hamming Codes (which are “optimal”). 



Page9 

Galois Field 

GF(23) with irreducible polynomial: x4 + x + 1 

a = x is a generator 

a x 010 2 

a2 x2 100 3 

a3 x + 1 011 4 

a4 x2 + x 110 5 

a5 x2 + x + 1 111 6 

a6 x2 + 1 101 7 

a7 1 001 1 

Will use this as an example. 



Page10 

Discrete Fourier Transform 

Another View of Reed-Solomon Codes 

a is a primitive nth root of unity (an = 1) – a generator 































)1)(1()1(21

)1(242

12

1

1

1

1111

nnnn

n

n

T

aaa

aaa

aaa

L



L

L

L





























































0

0

1

0

1

1

0









k

n

k

k m

m

T

c

c

c

c

The Discrete  
Fourier Transform 

(DFT) 

cTm 1

Inverse DFT 



Page11 

DFT Example 

a = x is 7th root of unity in GF(28)/x4 + x + 1 
Recall a = “2”, a2 = “3”, … , a7 = 1 = “1” 
 





























































6

2

32

65432

6

771

61

51

441

3331

2222221

1111111



6

5

4

63

42

65432

1

1

1

1

1

1

1111111

a

a

a

aa

aaa

aaaaaa

T

Should be clear that c = T ¢ (m0,m1,…,mk-1,0,…)T  
is the same as evaluating p(x) = m0 + m1x + … + mk-1xk-1  
at n points. 



Page12 

Decoding 

Why is it hard? 

 

Brute Force: try  k+s choose k + 2s possibilities and 
solve for each. 

 

 



Page13 

Cyclic Codes 

A code is cyclic if: 

    (c0, c1, …, cn-1) 2 C ) (cn-1, c0, …, cn-2) 2 C 

 

Both Hamming and Reed-Solomon codes are cyclic. 

Note: we might have to reorder the columns to make 
the code “cyclic”. 

 

We will only consider linear cyclic codes. 

Motivation: They are more efficient to decode than 
general codes. 



Page14 

Generator and Parity Check Matrices 
Generator Matrix: 

  A k x n matrix G such that:    

C = {m ¢ G | m 2 k} 

  Made from stacking the basis vectors 

Parity Check Matrix: 

  A (n – k) x n matrix H such that:   

C = {v 2 n | H ¢ vT = 0} 

  Codewords are the nullspace of H 

 

These always exist for linear codes 

H ¢ GT = 0 

 



Page15 

Generator and Parity Check Polynomials 
Generator Polynomial: 

  A degree (n-k) polynomial g such that:  

C = {m ¢ g | m 2 k[x]} 

  such that g | xn - 1 

Parity Check Polynomial: 

  A degree k polynomial h such that:   

C = {v 2 n [x] | h ¢ v = 0 (mod xn –1)} 

  such that h | xn - 1 

 

These always exist for linear cyclic codes 

h ¢ g = xn - 1 



Page16 

Viewing g as a matrix 

If g = g0 + g1x + … + gn-kxn-k 

We can put this generator in matrix form: 

Write m = m0 + m1 x + … mk-1xk-1 as (m0, m1, …, mk-1) 

Then c = mG 





























kn

knkn

kn

ggg

ggg

ggg

G

LL



LL

LL

10

10

10

00

00

00



Page17 

g generates cyclic codes 

Codes are linear combinations of the rows. 
All but last row is clearly cyclic (based on next row) 
Shift of last row is xkg mod (xn –1) 
Consider h = h0 + h1x + … + hkxk   (gh = xn –1) 

– h0g + (h1x)g + … + (hk-1xk-1)g + (hkxk)g = xn - 1 
– xkg = -hk

-1(h0g + h1(xg) + … + hk-1(xk-1g)) mod (xn –1) 
This is a linear combination of the rows. 
 




















































gx

xg

g

ggg

ggg

ggg

G

k
kn

knkn

kn

1
10

10

10

00

00

00



LL



LL

LL



Page18 

Viewing h as a matrix 

If h = h0 + h1x + … + hkxk 

we can put this parity check poly. in matrix form: 
























00

00

00

01

01

01

LL



LL

LL

hhh

hhh

hhh

H

k

kk

k

HcT = 0 



Page19 

Hamming Codes Revisited 

The Hamming (7,4,3)2 code. 























1011000

0101100

0010110

0001011

G


















0011101

0111010

1110100

H

g = 1 + x2 + x3 h = x4 + x2 + x + 1 

The columns are reordered from when we previously 
discussed this code. 

gh = x7 – 1,   GHT = 0   



Page20 

Factors of xn -1 

Intentionally left blank 



Page21 

Another way to write g 

Let a be a generator of GF(pr). 
Let n = pr - 1   (the size of the multiplicative group) 
Then we can write a generator polynomial as 
   g(x) = (x-a)(x-a2) … (x - an-k) 
Lemma: g | xn – 1   (a | b, means a divides b) 
Proof: 

–  an = 1     (because of the size of the group)  
) an – 1 = 0  
) a root of xn – 1  
) (x - a) | xn -1 

– similarly for a2, a3, …, an-k 
– therefore xn - 1 is divisible by (x - a)(x - a2) … 

 



Page22 

Back to Reed-Solomon 

Consider a generator g 2 GF(pr)[x], s.t. g | (xn – 1)  
Recall that n – k = 2s   (the degree of g) 
Encode: 

– m’ = m x2s         (basically shift by 2s) 
– b = m’ (mod g) 
– c = m’ – b   = (mk-1, …, m0, -b2s-1, …, -b0) 
– Note that c is a cyclic code based on g 

- m’ = qg + b         
- c = m’ – b = qg 

Parity check: 
- h c = 0 ?  



Page23 

Example 

Lets consider the (7,3,5)8 Reed-Solomon code. 
We use GF(23)/x3 + x + 1 

 

 

a x 010 2 

a2 x2 100 3 

a3 x + 1 011 4 

a4 x2 + x 110 5 

a5 x2 + x + 1 111 6 

a6 x2 + 1 101 7 

a7 1 001 1 



Page24 

Example RS (7,3,5)8 

 g = (x - a)(x - a2)(x - a3)(x - a4)  
= x4 + a3x3 + x2 + ax + a3 

 h = (x - a5)(x - a6)(x - a7) 
= x3 + a3x3 + a2x + a4 

gh = x7 - 1 

Consider the message: 110 000 110 

m = (a4, 0, a4) = a4x2 + a4 

m’ = x4m = a4x6 + a4x4 

    = (a4 x2 + x + a3)g + (a3x3 + a6x + a6) 

c = (a4, 0, a4, a3, 0, a6, a6) 

   = 110 000 110 011 000 101 101 

 

a 010 

a2 100 

a3 011 

a4 110 

a5 111 

a6 101 

a7 001 

ch = 0 (mod x7 –1) 



Page25 

A useful theorem 

Theorem: For any b, if g(b) = 0 then b2sm(b) = b(b) 

Proof:  

x2sm(x) = g(x)q(x) + d(x) 

b2sm(b) = g(b)q(b) + b(b) = b(b) 

 

Corollary:  b2sm(b) = b(b)  for b 2 {a, a2, …, a2s} 

Proof: 

 {a, a2, …, a2s} are the roots of g by definition. 

 



Page26 

Fixing errors 

Theorem: Any k symbols from c can reconstruct c 
and hence m 

Proof: 
We can write 2s equations involving m (cn-1, …, c2s) 

and b (c2s-1, …, c0).   These are 
a2s m(a) = b(a) 
a4s m(a2) = b(a2) 
… 
a2s(2s) m(a2s) = b(a2s) 

We have at most 2s unknowns, so we can solve for 
them.    (I’m skipping showing that the equations 
are linearly independent). 



Page27 

Efficient Decoding 

I don’t plan to go into the Reed-Solomon decoding 
algorithm, other than to mention the steps. 

Syndrome 
Calculator 

Error 
Polynomial 

 
Berlekamp 

Massy 

Error 
Locations 

 
Chien 

Search 

Error  
Magnitudes 

 
Forney 

Algorithm 

Error 
Corrector 

c m 


